Slabs in the lower mantle and their modulation of plume formation

نویسندگان

  • Eh Tan
  • Michael Gurnis
  • Lijie Han
چکیده

[1] Numerical mantle convection models indicate that subducting slabs can reach the core-mantle boundary (CMB) for a wide range of assumed material properties and plate tectonic histories. An increase in lower mantle viscosity, a phase transition at 660 km depth, depth-dependent thermal expansivity, and depth-dependent thermal diffusivity do not preclude model slabs from reaching the CMB. We find that ancient slabs could be associated with lateral temperature anomalies 500 C cooler than ambient mantle. Plausible increases of thermal conductivity with depth will not cause slabs to diffuse away. Regional spherical models with actual plate evolutionary models show that slabs are unlikely to be continuous from the upper mantle to the CMB, even for radially simple mantle structures. The observation from tomography showing only a few continuous slab-like features from the surface to the CMB may be a result of complex plate kinematics, not mantle layering. There are important consequences of deeply penetrating slabs. Our models show that plumes preferentially develop on the edge of slabs. In areas on the CMB free of slabs, plume formation and eruption are expected to be frequent while the basal thermal boundary layer would be thin. However, in areas beneath slabs, the basal thermal boundary layer would be thicker and plume formation infrequent. Beneath slabs, a substantial amount of hot mantle can be trapped over long periods of time, leading to ‘‘mega-plume’’ formation. We predict that patches of low seismic velocity may be found beneath large-scale high seismic velocity structures at the core-mantle boundary. We find that the location, buoyancy, and geochemistry of mega-plumes will differ from those plumes forming at the edge of slabs. Various geophysical and geochemical implications of this finding are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Current Energetics of Earth's Interior: A Gravitational Energy Perspective

The Earth’s mantle convects to lose heat (Holmes, 1931); doing so drives plate tectonics (Turcotte and Oxburgh, 1967). Significant gravitational energy is created by the cooling of oceanic lithosphere atop hotter, less densemantle. When slabs subduct, this gravitational energy is mostly (∼86% for whole mantle flow in a PREM-like mantle) transformed into heat by viscous dissipation. Using this p...

متن کامل

Upper- and mid-mantle interaction between the Samoan plume and the Tonga–Kermadec slabs

Mantle plumes are thought to play a key role in transferring heat from the core-mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes o...

متن کامل

The difficulty for subducted oceanic crust to accumulate at the Earths coremantle boundary

[1] Seismic tomography has revealed two large low shear velocity provinces (LLSVPs) in the lowermost mantle beneath the central Pacific and Africa. The LLSVPs are further shown to be compositionally different from their surroundings. Among several hypotheses put forth in recent years to explain the cause of the LLSVPs, one postulates that they are thermochemical piles caused by accumulation of ...

متن کامل

Development of Anisotropic Structure by Solid-State Convection in the Earth’s Lower Mantle

Recent seismological observations show patches of highly anisotropic regions in the bottom of an otherwise isotropic lower mantle 1-4. These regions likely correspond to paleo-subduction or plume upwelling, but the exact cause for anisotropy is unknown. Both shape-preferred orientation (SPO) of elastically heterogenous materials 5 and lattice-preferred orientation (LPO) 6-8 have been proposed. ...

متن کامل

Modulation of mantle plumes and heat flow at the core mantle boundary by plate-scale flow: results from laboratory experiments

We report results from analog laboratory experiments, in which a large-scale flow is imposed upon natural convection from a hot boundary layer at the base of a large tank of corn syrup. The experiments show that the subdivision of the convective flow into four regions provides a reasonable conceptual framework for interpreting the effects of large-scale flow on plumes. Region I includes the are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002